
1

Michael Pradel
Software Lab – University of Stuttgart
Joint work with Matteo Paltenghi

Thinking Like a Developer?
Comparing the Attention of Humans
with Neural Models of Code



2 - 1

Neural Software Analysis

Learning developer tools from large
software corpora

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

Neural Software Analysis, CACM’22



2 - 2

Neural Software Analysis

Learning developer tools from large
software corpora

Source code
Execution traces
Documentation
Bug reports
etc.

Predictive
tool

Machine
Learning

New code,
execution,
etc.

Information
useful for
developersNeural Software Analysis, CACM’22



3

What are these
models actually
learning?



4

Idea: Compare Humans & Models

■ Same task

■ Same code examples

■ Measure attention and
effectiveness

vs.
Machine
Learning

Neural models of codeDevelopers

Thinking Like a Developer? Comparing the Attention of Humans with Neural Models of Code, ASE’21



5

Methodology



6

Task 1: Code Summarization

{
if (!prepared(state)) {
return state.setStatus(MovementStatus.PREPPING);

} else if (state.getStatus() == MovementStatus.PREPPING) {
state.setStatus(MovementStatus.WAITING);

}
if (state.getStatus() == MovementStatus.WAITING) {
state.setStatus(MovementStatus.RUNNING);

}
return state;

}

Input: Method body
updateState
Output: Method name

* A Convolutional Attention Network for Extreme Summarization of Source
Code, ICML’16

Dataset: 250 methods from 10 Java projects *



7

Task 2: Program Repair

public double sqrt(double x, double epsilon) {
double approx = x / 2d;
while (Math.abs(x - approx) > epsilon) {
approx = 0.5d * (approx + x / approx);

}
return approx;

}

Input: Method with a buggy line

while (Math.abs(x - approx * approx) > epsilon) {

Output: Fixed line

* QuixBugs: A Multi-Lingual Program Repair Benchmark Set Based on the
Quixey Challenge, SPLASH’17 (Companion)

Dataset: 16 bugs from QuixBugs (Java) *



8

Capturing Human Attention

■ Goal: Track human attention while
performing the task

■ Approach: Unbluring-based web
interface

□ Initially, all code blurred

□ Moving mouse/cursor temporarily unblurs

tokens



9

Capturing Human Attention

Task 1: Code Summarization

91 participants; 1,508 human attention records



10 - 1

Capturing Human Attention

Task 2: Program Repair

27 participants;
98 bug fixing
records



10 - 2

Capturing Human Attention

Summarize fine-grained attention record
into attention map:



11

Model Attention

Attention

Regular Copy

Code summarization
CNN, ICML’16 ✔ ✔

Transformer, ACL’20 ✔ ✔

Program repair
SequenceR, TSE’21 ✔ ✔

Recoder, FSE’21 ✔ ✘



12

Results



13

Human-Model Agreement

Do developers and models focus on the
same tokens?

■ Given for each code example

□ Human attention vector h⃗

□ Model attention vector m⃗

■ Measure agreement between them

□ Spearman rank correlation:
cov(rg

h⃗
,rgm⃗)

σrg
h⃗
,σrgm⃗



14 - 1

Results: Summarization

Human-human agreement:

Developers mostly agree on what code
matters most



14 - 2

Results: Summarization

Human vs. copy attention:

Empirical justification for copy attention



14 - 3

Results: Summarization

Humans vs. regular attention:

Lots of room for improvement!



15 - 1

Results: Program Repair

Human-human agreement:

Developers mostly agree on what code
matters most



15 - 2

Results: Program Repair

Human-model agreement:

Some room for improvement



16

Tokens to Focus On

What kind of tokens to focus on?

■ Different kinds: Identifiers, separators, etc.

■ For each kind, compute distance from uniformity

□ = 0 means uniform attention

□ −1 means no attention at all

□ > 0 means more than uniform attention



17 - 1

Results: Summarization

Distance from uniformity:



17 - 2

Results: Summarization

Distance from uniformity:

Identifiers
are deemed
important



17 - 3

Results: Summarization

Distance from uniformity:

Models
mostly
ignore
some kinds
of tokens



17 - 4

Results: Summarization

Example from Transformer model:



17 - 5

Results: Summarization

Example from Transformer model:

Model “wastes” attention
on understanding syntax



17 - 6

Results: Summarization

Example from Transformer model:

Model ignores tokens
important to developers



18

Effectiveness

Comparing developers and models w.r.t.
their effectiveness at solving the task

■ Strengths and weaknesses?

■ Can current models compete with developers?



19

Results: Summarization

Models underperform on
non-trivial methods

Comparing different kinds of methods:



20 - 1

Results: Program Repair

Plausible patch ratio

Top-5 Top-100

SequenceR 2/80 (2.5%) 17/1395 (1.2%)
Recoder 2/80 (2.5%) 10/908 (1.1%)

5-7 developers/bug

Developers 68/98 (69.4%)

Success rate during program repair:



20 - 2

Results: Program Repair

Plausible patch ratio

Top-5 Top-100

SequenceR 2/80 (2.5%) 17/1395 (1.2%)
Recoder 2/80 (2.5%) 10/908 (1.1%)

5-7 developers/bug

Developers 68/98 (69.4%)

Success rate during program repair:

Models are far from human effectiveness



21

Effectiveness vs. Agreement

Are models more effective when they
agree more with developers?



22

Results: Summarization

Human-model agreement for
all vs. accurate predictions:

Spearman rank correl.

All Methods with
methods F1 ≥ 0.5

CNN (regular) 0.08 0.24
CNN (copy) 0.49 0.55
Transformer (reg.) -0.20 0.02
Transformer (copy) 0.47 0.55

More human-like predictions
are more accurate



23

Implications

■ Direct human-model comparison

□ Helps understand why models (do not) work

■ Should create models that mimic
humans

□ Use human attention during training

□ Design models that address current

weaknesses

• E.g., understanding string literals



24

Conclusions

■ Available for future research:

□ Interface for capturing human attention

□ Datasets of human attention records

■ More details:
Thinking Like a Developer? Comparing the

Attention of Humans with Neural Models of Code,

ASE’21


