
1

Proprietary + Confidential

TALM and the state of 
Tool-Use
Aaron Parisi, Google Deepmind

Coauthors: Noah Fiedel, Yao Zhao



2

Proprietary + Confidential

Agenda

1. Why tool-use
2. TALM overview
3. Lessons learned
4. The future of tool-use



3

Proprietary + Confidential

3

Why tool-use?



4

Proprietary + Confidential

Lots of obvious reasons

● Modularity
● Offloads computations / functions
● Parameter efficiency - fewer computations, simpler 

computations -> fewer parameters needed

Oh yeah and I do suppose

● It’s one of the hallmarks of sapient intelligence on 
Earth

● Tools are essential for addressing the 
shortcomings of any “thinking system”



5

Proprietary + Confidential

The progress of tool-use
● Markov Decision Processes (MDPs) expose 

discrete actions
○ Heirarchical MDPs allow for parametric tool 

use
● Custom models (fuzzy logic, RL agents, domain 

specific languages) for parametric tool-use
● Language models expand sequence modelling 

(MDP representation) capabilities
● TALM goes here
● Few-shot / 0-shot prompting
● Language models begin composing more robust 

API calls



6

Proprietary + Confidential

6

TALM 



7

Proprietary + Confidential

Results overview



8

Proprietary + Confidential

Algorithm Overview

● Expert Iteration
● Obvious Drawbacks: Search 

space increases exponentially 
as the induced MDP expands 
(more tools / steps -> 
exponentially growing search 
space)
○ REINFORCE with binary 

reward signal (good vs bad 
outcome) is a heavily 
biased estimator



9

Proprietary + Confidential

9

Lessons Learned



10

Proprietary + Confidential

A bitter lesson

● Shortly after publishing TALM, instruct-tuned models 
really became a thing

● Why go through such an exhaustive search 
procedure when few-shot/0-shot/prompt tuning 
methods work?
○ This method only really makes sense for 

smaller models that don’t benefit from 
prompting methods.

● Furthermore, we found that larger language models 
need significantly fewer finetuning examples to be 
able to learn tool-use without few-shot examples!



11

Proprietary + Confidential

A useful tech demo
● Bootstrapping works!
● Toolformer - obvious extension to our work

○ Let’s augment the loss function with a reward 
function that tries to signal the causal effects 
of tool-use at a given timestep

○ This is similar to augmenting the binary 
self-play reward signal to be less biased 
towards cases where the model would succeed 
without tool-use

● Smaller models can reliably bootstrap their own 
performance for simple tasks, dependent almost 
entirely on the performance of the search procedure



12

Proprietary + Confidential

12

The state, and future of 
tool-use



13

Proprietary + Confidential

Tool-Use and Large Models

● Few-shot/zero-shot/prompt-tuning for large models
○ Open Questions:

■ How do we get LLMs to handle arbitrary, 
increasingly complex tools?



14

Proprietary + Confidential

Tool-Use and Small Models

● Data augmentation via self-play for small 
models? 
○ Open Questions:

■ How do we prevent the search space from 
growing exponentially?
● More robust data augmentation, 

representations?
■ Can small models compose like big 

models?



15

Proprietary + Confidential

Conclusion and Q&A

Both large and small models benefit from 
sampling/training algorithmic improvements! Stay 
tuned for some exciting advancements from GDM, of 
course!

[specifically, look forward to a paper addressing the 
shortcomings of outcome-based (binary reward) RL 
on implicit MDPs]

[and maybe get my personal contact info too:

aarontp@proton.me or @ me on linkedin, I have 
personal ambitions ;P ]

mailto:aarontp@proton.me

