W TANDON SCHOOL
NYU | aroonscoo:

Lost at C

Security Implications of Large Language
Model Code Assistants

Brendan Dolan-Gavitt

In collaboration with: Gustavo Sandoval, Hammond Pearce, Teo Nys, Ramesh
Karri, and Siddharth Garg CENTER FOR

CYBER SECURITY

W

2 How Secure is the Code LLMs Write?

NYU

Lost at C: Security Implications of Large Language Model Code Assistants

W

!
NYU

How Secure is the Code LLMs Write?

Al Can Write Code Like Humans—Bugs and All

New tools that help developers write software also generate similar mistakes.

Lost at C: Security Implications of Large Language Model Code Assistants

W

!
NYU

B

Crappy code, crappy Copilot. GitHub Copilot is writing
vulnerable code and it could be your fault

o by Mackenzie Jackson on August 23, 2022

How Secure is the Code LLMs Write?

Al Can Write Code Like Humans—Bugs and All

- New tools that help developers write software also generate similar mistakes.

Lost at C: Security Implications of Large Language Model Code Assistants

W

How Secure is the Code LLMs Write?

BUSINESS SEP 28, 2821 7:88 AM
Al Can Write Code Like Humans—Bugs and All

" New tools that help developers write software also generate similar mistakes.

!
NYU

B

Crappy code, crappy Copilot. GitHub Copilot is writing
vulnerable code and it could be your fault

0 by Mackenzie Jackson on August 23, 2022

Developers beware: Al pair programming comes with
pitfalls

Despite the promise of faster coding, Al pair programming has a host of pitfalls,
including inapplicable code suggestions, security flaws and copyright issues.

Lost at C: Security Implications of Large Language Model Code Assistants

W

How Secure IS the Code LLMs Write?

!
NYU

B

Crappy code, crappy Copilot. GitHub Copilot is writing
vulnerable code and it could be your fault

o by Mackenzie Jackson on August 23, 2022

Al Can Write Code Like Humans—Bugs and All

" New tools that help developers write software also generate similar mistakes.

Developers beware: Al pair programming comes with
pitfalls

FEATURE Despite the promise of faster coding, Al pair programming has a host of pitfalls,

W hv yu u c a n It t r u st AI - g e n E rate d icluding inapplicable code suggestions, security flaws and copyright issues.

5\
v N
v..yr By By Stephanie Glen, News Writer Published: 22 Jul 2022
e

autocomplete code to be secure

Artificial intelligence-powered tools such as GitHub Pilot and Tabnine offer developers
autocomplete suggestions that help them write code faster. How do they ensure this code is

OODO OO
B By Andrada Fiscutean
CSO

Lost at C: Security Implications of Large Language Model Code Assistants

W

How Secure is the Code LLMs Write?

BUSINESS SEP 28, 2821 7:88 AM
Al Can Write Code Like Humans—Bugs and All

" New tools that help developers write software also generate similar mistakes.

!
NYU

B

Crappy code, crappy Copilot. GitHub Copilot is writing
vulnerable code and it could be your fault

o by Mackenzie Jackson on August 23, 2022

Developers beware: Al pair programming comes with
pitfalls

FEATURE Despite the promise of faster coding, Al pair programming has a host of pitfalls,

W hv yu u c a n It t r u st AI - g e n E rate d including inapplicable code suggestions, security flaws and copyright issues.

$ 5\

v N

v..yr By By Stephanie Glen, News Writer Published: 22 Jul 2022
e

autocomplete code to be secure

Artificial intelligence-powered tools such as GitHub Pilot and Tabnine offer developers
autocomplete suggestions that help them write code faster. How do they ensure this code is

secure? e
O§ODO OO GitHub Copilot Security Study: 'Developers Should Remain
B\ gy Andrada Fiscutean Awake' in View of 40% Bad Code Rate

Lost at C: Security Implications of Large Language Model Code Assistants

‘?” Asleep at the Keyboard

Prior work at IEEE Security and Privacy 2022
NYU d Y

 We did a systematic study of Copilot’s code completions in security-sensitive
scenarios, measuring vulnerability rates with GitHub CodeQL

» Key findings:
* Across all scenarios, 42% of the generated programs were vulnerable

* Features of the prompt, including comments, affects the rate of vulnerable
code

* The strongest predictor of whether Copilot will produce a vulnerabillity is the
presence of an existing vulnerability in the prompt

Lost at C: Security Implications of Large Language Model Code Assistants

But Wait! N

Some objections from Reviewer #2

* |n the real world, Copilot works
with human assistance

 Maybe humans would spot and
fix these mistakes?

 For that matter, maybe
unassisted humans would write
bugs at the same rate!

o Strong reject

Lost at C: Security Implications of Large Language Model Code Assistants

W

Research Questions

!
NYU

 RQ1: Does the Al code assistant help novice users write better code in terms
of functionality?

e RQ2: Is the code that novice users write with Al assistance more or less
secure than the control group?

 RQ3: Are there systematic differences in the coding style of Al-assisted users
and that of control group?

« RQ4: How do Al assisted users interact with potentially vulnerable code
suggestions, i.e., where do bugs originate in an LLM-assisted system?

Lost at C: Security Implications of Large Language Model Code Assistants

Study Environment

e Goals:

 Minimize environment setup hassle
* Log all the things

* Participants were asked to use our Anubis web-
based IDE, which provides a VNC session to a
Linux desktop with VSCode and a C compiler

» Created a VSCode plugin that mimics Copilot,
but uses suggestions provided by the Codex

API

 Logged: document snapshots every minute,
prompt+suggestion data (including accepted/
not accepted)

Lost at C: Security Implications of Large Language Model Code Assistants

= Participant Sign-up Form X "8 Anubis x " Anubis " B Guacamole Client x S

C @ O B https://anubis.osiris.services/ide/ © I @ ©

@ Getting Started @ Getting Started @) Getting Started £ Most Visited @) NYU EZproxy link (3 From Microsoft Edge [HE World University Rank... @y Email - Hammond Pea... (O other Bookmarks

Applications =] list.c - study_content - V... {) Wed 06 Apr, 19:30 abx

File System

X

File Edit Selection View Go Run Terminal Help

. EXPLORER
., STUDY_CONTENT

> cmocka
.gitignore
example_load_file.txt

, list init(node **head)
list_testmode.o

gSET *head = NULL;
list.h return EXIT SUCCESS;
list.o
C main.c
main.o
Makefile
mylist . , o
HERE | int list item to string(node *head,
README.pdf | ‘
runtests ' |
C runtests.c return EXIT FAILURE;

runtests.o

t list print(node *head) {
“% 5 ouTLINE
X Pincerrv ®OAO0 Ln 37,Col29 Spaces:4 UTF-8 LF C & [

- mhe. .

If you are reading these slides in PDF, you can see the video by clicking here:
https://moyix.net/~moyix/anubis.mp4

https://moyix.net/~moyix/anubis.mp4

= Participant Sign-up Form X "8 Anubis x " Anubis " B Guacamole Client x S

C @ O B https://anubis.osiris.services/ide/ © I @ ©

@ Getting Started @ Getting Started @) Getting Started £ Most Visited @) NYU EZproxy link (3 From Microsoft Edge [HE World University Rank... @y Email - Hammond Pea... (O other Bookmarks

Applications =] list.c - study_content - V... {) Wed 06 Apr, 19:30 abx

File System

X

File Edit Selection View Go Run Terminal Help

. EXPLORER
., STUDY_CONTENT

> cmocka
.gitignore
example_load_file.txt

, list init(node **head)
list_testmode.o

gSET *head = NULL;
list.h return EXIT SUCCESS;
list.o
C main.c
main.o
Makefile
mylist . , o
HERE | int list item to string(node *head,
README.pdf | ‘
runtests ' |
C runtests.c return EXIT FAILURE;

runtests.o

t list print(node *head) {
“% 5 ouTLINE
X Pincerrv ®OAO0 Ln 37,Col29 Spaces:4 UTF-8 LF C & [

- mhe. .

If you are reading these slides in PDF, you can see the video by clicking here:
https://moyix.net/~moyix/anubis.mp4

https://moyix.net/~moyix/anubis.mp4

W

!
NYU

e Since we’re studying security
chose C because it’s a “target-
rich environment”

* \We deliberately included some
pitfalls in the data structure and
API to further broaden the range
of possible errors

» Singly linked list: lots of
opportunity for pointer mistakes

* |Includes a string field (buffer
overflows, etc.)

N N DB B~ WD =

S O 0 9 O Ut B W =

[E—

P
o

Study Task: “Shopping List”

The Worst Singly Linked List API (11 functions total)

// Node of the singly linked 1list
typedef struct _node {

char* i1tem_name; \

float price;
int quantity ;
struct _node =*xnext;

} node;

Uh oh, strings

(a) Node definition (in 1ist.h)

#include <stdio .h>
#include <stdlib .h>

#include <getopt.h> -

#include <string .h> Fixed Iength
#include 7 list.h”

#define MAX ITEM PRINT LEN 100

// Note: All list_ functions should return a status code
// EXIT _FAILURE or EXIT SUCCESS to indicate whether the

operation was
// successful or not.

(b) #includes and implementation hints (in 1ist.c)

Lost at C: Security Implications of Large Language Model Code Assistants

W
v

Experience Level
NYU —*°

Participant Demographics

Control | Assisted Total
Is this the first linked list implementation you have ever made in C?
Yes (first list) 14 16 30
No (not first list) 11 12 23
Declined to answer 3 2 S

Is this the first time that you have ever programmed in C?

Yes (first time) 3 4 7
No (not first time) 22 23 45
Declined to answer 3 3 6

Are you taking, or have you ever taken a data structures or algo. class?

Currently taking 2 3 S
Previously taken 21 25 46
Never taken 2 3
Declined to answer 3 4

Lost at C: Security Implications of Large Language Model Code Assistants

0 10

2 Functionality Results
NYU Rise of the Machines

Bl Compiled Bl Basic Tests
B Implemented B Expanded Tests

100

80
v
)

S 60
-
v
O

o 40
o

- Ii - .
0

Control Assisted Autopilot

Lost at C: Security Implications of Large Language Model Code Assistants

11

0.30

0.25

Bugs per LoC

0.200 l
0.075

Control Assisted Autopilot Control Assisted Autopilot

CWEs/LoC for compiling code CWEs/LoC, code that passes the basic unit test

Lost at C: Security Implications of Large Language Model Code Assistants

12

Security Results

Number of severe (MITRE Top 25) vulnerabilities per line of code

0.30
0.25
O O
S S
= 0.20 -
o) o)
Q. Q.
90.15 o
m e
0.10 0.10
0.05 0.05
Control Assisted Autopilot Control Assisted Autopilot
Severe CWEs/LoC for compiling code Severe CWEs/LoC, code that passes the basic unit test

Lost at C: Security Implications of Large Language Model Code Assistants

13

CWE-476 NULL Pointer Dereference

Security Results: CWEs

CWE-758 Reliance on Undefined,
Unspecified, or Implementation-
Defined Behavior

CWE-401 Missing Release of Memory after
Effective Lifetime

30.0% CWE-252 Unchecked Return Value
W= Control CWE-416 Use After Free
B Assisted

20.0%% BN Autopilot CWE-787 Out-of-bounds Write

CWE-457 Use of Uninitialized Variable
) CWE-843 Access of Resource Using
1007 Incompatible Type (‘' Type
Confusion’)
II I I II CWE-824 Access of Uninitialized Pointer
0:0% "o 0 0 0 0 o. l.o l. i
%“7 %, %, %, @7 2 2

Q. Y Y CWE-835 Loop with Unreachable Exit
N, Q) Qy Qe Q s) s& Q& Q? Q& g | u . |
43 3 o, 35 % N3 % SN R Condition ('Infinite Loop’)

Lost at C: Security Implications of Large Language Model Code Assistants

14

W

Measuring Style
NYU

 We wanted to check if there were difference in style between human and Al-
assisted users

* Can we tell if someone is using Copilot?
* \We used two measures:
 The Moss plagiarism detection tool to measure similarity between users

* The quantity of repeated substrings in the file to measure similarity within an
iIndividual user’s submission

Lost at C: Security Implications of Large Language Model Code Assistants

15

Moss Similarity Within-file Similarity
Between Groups (Longest Repeated Substring

Between-Source File Similarity (Moss)
Asst_00 - a

Asst 04
Asst 08
Asst 12
Asst 16
Asst 20 -
Asst 24
Asst 28
Control 02
Control 06
Control 10
Control 14
Control 18
Control 22
Control 26
Cush 02
Cush 06
DaV1l 00
DaV1l 04
DaV1l 08
DaV2 02
DaV2 06

- 30 30 -

0.6-

I‘“O <&

251

10-
5.
0-

Control Assisted Autdpilot ~ Control Assisted Autopilot
Group Group

¢

¢

¢

‘ 0.5
RN

I’O <O

o
N

User
|

O
w

Similarity
|_I
vl
Similarity

o
N

©
(-

e

04

Asst 08

Asst 12
28

02
06
10
14
18
22
26
02
06

Asst 00
Asst
Asst 16
Asst 20
Asst 24
Asst
Contro
Contro
— Contro
@ Contro
=~ Contro
Contro
Contro
Cush
Cush 06
DaV1l 00
DaV1l 04
DaV1l 08
DaV2 02
DaV?2
i
o

Lost at C: Security Implications of Large Language Model Code Assistants

16
A Style Results (LM)
NYU Suggested during Q&A: Use Codex to Get Prob. of Document

Average Token Probability by Group

70 -

60 -

AvgTokenProb
W 4 U
o (- o

N
o
1

—
o
1

Control Assisted Autopilot
Group

Lost at C: Security Implications of Large Language Model Code Assistants

17

NYU git blame codex

* Using the data from the IDE, can we identify
where vulnerabilities were introduced into the

user’s code”?

* |n particular, did they come from Codex
suggestions or were they written by
humans?

e |dea:

 Find an automated way to check for some
common vulnerability

 Use our document snapshots and
suggestion data to see if it first appeared In
a document (human-written) or suggestion
(introduced by Codex)

Lost at C: Security Implications of Large Language Model Code Assistants

18

W

Bug Origins: Missing strdup

NYU

* We picked one bug for this that we could identify with just a regular
expression

* Vulnerability failing to make a copy of the 1tem_name provided by the
caller (e.g. using strdup) before storing it in the node

 Can lead to CWE-416: Use-After-Free because the list library has no
control over when the user-provided string will be freed

 We can identify it by just looking for direct assignments to
node—>1tem_name with no strdup/strcpy/malloc

Lost at C: Security Implications of Large Language Model Code Assistants

W

Bug Origins: Results
NYU

* This vulnerability was introduced by
Codex more often than not

e But some users introduced it
themselves, and did not accept further
buggy suggestions

 Some users got a lot of buggy
suggestions (69 in one case!)

 Weak trend: more bug suggestions =>
more bugs in final file

First location

Participant of bug # Bug # Bu.g # Bugs
ID (document / | suggestions suggestions | in final
. accepted file
suggestion)
0640 Suggestion 5 3 3
Iflc Document 5 0 2
2125 Document 0 0 3
26a4 Suggestion 3 1 2
3533 Suggestion 2 1 1
36de Suggestion 69 5 4
3ctt Suggestion 2 2 2
S14e Document 1 1 1
7193 Suggestion 13 1 2
74bd Suggestion 4 2 2
925¢ Suggestion 8 2 1
a3ed Suggestion 10 2 2
a4b3 Suggestion 11 5 4
adSba Document 0 0 1
a80d Document 6 3 3
a974 Suggestion 12 5 3
b59f Suggestion 8 2 2
be6f Suggestion 4 1 2
c23b Suggestion 20 10 5
dac3 Document 10 2 2
dc47 Suggestion 1 0 2
ddac Suggestion 13 1 1
ec83 Document 11 3 2
fd62 Suggestion 12 1 1

Lost at C: Security Implications of Large Language Model Code Assistants

19

20

Check out the paper! https://arxiv.org/abs/2208.09727
Dataset Visualization: https://moyix.net/~moyix/secret/suggestion cover.html

o Significant differences in functionality between groups on functionality
» Surprisingly, no discernible difference on security

* Limited by small sample size
 Maybe a slight trend in favor of Codex

* Potentially found a signal we can use to distinguish Copilot/Codex written
code from human-written code (repetition)

 Has implications for stylometry, confirms that tendency toward repetition
may amplify the existing vulnerabilities in the code

Lost at C: Security Implications of Large Language Model Code Assistants

https://arxiv.org/abs/2208.09727
https://moyix.net/~moyix/secret/suggestion_cover.html

