# parameters

A Systematic Survey of Large
Language Models of Source Code

Frank Xu, Uri Alon, Graham Neubig, Vincent J. Hellendoorn
MAPS @ PLDI

June 13th, 2022

10B

5B 137.0B

18 0B
00M

4 . N 1
e & e, - )
- & & K <X & C Pt
v X ! 4‘;\ o



Outline

4

Background State of the Field Challenges



Transformers

Allow for unprecedented scaling

Test Loss 5.4
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Transformers asymptotically outperform LSTMs
due to improved use of long contexts
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Scaling Laws for Neural Language Models. Kaplan et al., 2020. https://arxiv.org/pdf/2001.08361.pdf




Software: We Scale Too
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https://arxiv.org/pdf/2202.13169.pdf




Software: We Scale Too

Last year*
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Note: orange is closed-source

https://arxiv.org/pdf/2202.13169.pdf -- *As of February 2022; missing newer models including CodeGen (16B), PaLM (535B)




Why We're Here

GitHub Copilot (June 2021)

° Closed_sou rce func cz“éateTables

Exec("CREATE TABLE tasks (id INTEGER PRIMARY KEY, title TEXT, value INTEGER, category TEXI

e Limited details

func createCategorySummaries(db *sql.D

https://copilot.github.com/
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P,
What Makes a Good LLM for Code-

1. Data
* Volume
* Preprocessing

Frank F, Xu, Uri Alon, Graham Neubig,

School of Computer Science
1 Carnegje Mellon Um‘vcrsity
2. Model Size

Vincent J, Hellendoorp

{fangzhey yualon, gneubiglecs . Cmu.edu, vhej lendoorn@cmu. edu

* Parameters

! ! ABSTRACT
3. Initialization

Large language models (LMs) of code have recently shown tremendoys promise
. in completing code and Synthesizing code from natury) language descriptions,
° N L pret raini ng Owever, the current state-of-the-grt code LMs (e.g., Codex (Chen et a1, 2021))
H are blicly available. joqyi i
n g are not publicly 5
. + NL traini
* Joint code

leaving many questions about their model and dagy
design decisions. We aim to fi] jp Some of these blankg through 3 Systematic
evaluation of the largest exj

s s: . -J, GPT-Neo, GPT-NeoX.-
20B, and CodeParror, 4Cross varioys Programming languages Although Codex
4 Train i ng itself is nop open-source, we fing that existj

EXISting open-soyrce models do achieve
close results jn some Programming languages, although largeted mainly for natural
n language modeling. We further identify an important missing piece in the form of
° COde tO ke ns see a large Open-source mode] trained exclusively on 5 multi-lingya] corpus of code,
ffeCt S We release 3 new mode], PolyCoder, with 2.7
* Language e

<.7B parameters based on the GPT-2

; across 12 Programming languages
. On a single machjne. In the C Programming language, PolyCoder outperforms
i misScC. all models including c, odex. Qur trained modejs are open-source ang public,
* Batch size & available at https: //g1 thop. com

future research and applicatiop jp this area



Pass Rate vs Model Size

0.7 4 — pass@1l (T*=0.2)
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Pass@k

0.3 +
The first many-billion parameter LM for code 02 -

* Initialized from GPT-3 Z;

* Fine-tuned on 159GB of Python 100 100 107 100 100 100

Non-embedding parameters
* Introduced HumanEval: a benchmark of

NL - Python Code prob|ems with tests Model Performance With and Without Subtle Bugs in Context
0.30 +

Examples with subtle bugs in context,
instructed to write good code

Correct examples in context,
instructed to write good code

No examples in context,

instructed to write good code
Examples with subtle bugs in context, /
no instructions i’/
_ Correct examples in context, :
no instructions

No examples in context,
no instructions

Some Findings:
e Strong, log-linear scaling after ~ 50M params
* Prompting matters, even non-functional aspects
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https://arxiv.org/pdf/2107.03374.pdf

Non-embedding parameters



CodeParrot Q

CodeParrot (110M) Performance

+
EEE Raw data o5

12 1 mmm Deduplicated data

The first OSS entry

* 1.5B parameters

pass@k

* 26B Python tokens from BigQuery

Some Findings:

k=1 k=10 k=100

* Deduplication is key sarple! EEEEEEEEE

* Uses windows of 1,024 tokens sample2 (I
: o . sampe’ MMM EEEEEEEEED
 Large inputs are expensive with attention cont
* Codex goes up to 4K tength
EOS Token
N

! I il ]
I w L}

https://huggingface.co/blog/codeparrot " Input2 -




PolyCoder

1.50 1.50
Our entry from CMU 51251 §1.25
§1.oo- 5 1.00+
* 2.7B parameters £ 3
075 5075
* Trained on 12 languages 050 0.50-
* First 0SS multi-lingual LLM 0 25 5'0x1007(;55tep:60 125 150 0 25 5'ox1007(;55tep;60 125 150
(a) Training (b) Validation

Some Findings: 1751 _+ pass@l /\
: “ . ” . . 04 —* Pass@l0
* Edge of single-node/“lab-machine” scale training 122 —+— Pass@100
* Ca. 45 days on 8 * RTX 8000 48GB | _/
10.01 o —

* Further insights into sampling temperature
* Among others
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https://arxiv.org/pdf/2202.13169.pdf



A Systematic Evaluation of Large Language Models of Code

* The good news: PolyCoder outperforms Codex on C

B Codex* W PolyCoder 2.7B GPT-Ne0o 2.7B W GPT-J6B W GPT-NeoX 20B CodeParrot

C

* Since the exact training set of Codex is unknown, it may include files from these test sets

rendering Codex’s results overly-optimistic.
https://arxiv.org/pdf/2202.13169.pdf — NOTE: CodeParrot Python score is incorrect, should be ca. 2.9




A Systematic Evaluation of Large Language Models of Code

* The good news: PolyCoder outperforms Codex on C

* The bad news: most LMs, even some trained on less code, are better on others

B Codex* W PolyCoder 2.7B GPT-Neo 2.7B W GPT-J6B W GPT-NeoX 20B ™ CodeParrot

w

N

—

C C# C++ Go Java JavaScript PHP Python  Ruby Rust Scala TypeScript

* Since the exact training set of Codex is unknown, it may include files from these test sets

rendering Codex’s results overly-optimistic.
https://arxiv.org/pdf/2202.13169.pdf — NOTE: CodeParrot Python score is incorrect, should be ca. 2.9




A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

* It seems unreasonably effective

30
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https://arxiv.org/pdf/2202.13169.pdf



A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work

* It seems unreasonably effective

* What gives? It does more data preprocessing, but CodeParrot does the same

PolyCoder CodeParrot Codex
Dedup Exact Exact Unclear, mentions “unique”
Filtering Files > 1 MB, < 100 to- Files > IMB, max line length >  Files > 1MB, max line length >
kens 1000, mean line length > 100, 1000, mean line length > 100,
fraction of alphanumeric charac- auto-generated (details unclear),
ters < (.25, containing the word  contained small percentage of al-
“auto-generated” or similar in  phanumeric characters (details
the first 5 lines unclear)
Tokenization Trained GPT-2 tok- Trained GPT-2 tokenizer on GPT-3 tokenizer, add multi-

enizer on a random 5%
subset (all languages)

train split

whitespace tokens to reduce re-
dundant whitespace tokens

https://arxiv.org/pdf/2202.13169.pdf



A Systematic Evaluation of Large Language Models of Code

Goal: understand what makes Codex work
* It seems unreasonably effective

 What then? Candidate explanations:

PolyCoder (2.7B)

CodeParrot (1.5B)

Model Initialization

From scratch

From scratch

Codex (12B)

Initialized from GPT-3 e .
NL Knowledge Learned from com- Learned from com- ‘Natural language knowl- \ Initialization
ments in the code ments in the code edge from GPT-3
Learning Rate 1.6e-4 2.0e-4 le-4
Optimizer AdamW AdamW AdamW
Adam betas 0.9, 0.999 0.9, 0.999 0.9, 0.95
Adam eps le-8 le-8 le-8
Weight Decay - 0.1 0.1
Warmup Steps 1600 750 175
Learning Rate Decay Cosine Cosine Cosine
Batch Size (#tokens) 262K 524K 2M
Training Steps 150K steps, 39B tokens  SOK steps, 26B tokens | 100B tokens Training
Context Window 2048 1024 4096

https://arxiv.org/pdf/2202.13169.pdf



Pre-Training: Let’s Talk GPT-x @

cleutherRl

* Various open source LLMs trained on The Pile

* Large web-crawl including GitHub (ca. 10%) & StackOverflow
* Mainly of interest: GPT-J, GPT-Neo, GPT-NeoX
* Up to 20B parameters (NeoX)

Composition of the Pile by Category

» Academic * Internet = Prose * Dialogue * Misc

Pecc

https://arxiv.org/pdf/2101.00027.pdf




Let’s Talk GPT-x

* Trained far longer, but on similar #code tokens

* Around 100M parameters, CodeParrot is decidedly better, followed by PolyCoder

Model Pass@]1 Pass@10 Pass@100 Tokens Trained Code Tokens Python Tokens
PolyCoder (160M 2.13% 3.35% 4.88% 2.5B

CodeParrot (110M 3.80% 6.57% 12.78%

GPT-Neo (125M) 0.75% 1.88% 2.97%

https://arxiv.org/pdf/2202.13169.pdf




Let’s Talk GPT-x

* Trained far longer, but on similar #code tokens

* Butin 1-3B range, Neo is clearly better

Model Pass@]1 Pass@10 Pass@100 Tokens Trained Code Tokens Python Tokens

PolyCoder (2.7B) 5.59% 0.84% 17.68%

CodeParrot (1.5B) 3.58% 8.03% 14.96%

GPT-Neo (1.3B) 4.79% 7.47% 16.30%
GPT-Neo (2.7B 6.41% 11.27% 21.37%

https://arxiv.org/pdf/2202.13169.pdf — NeoX 20B is even better, has been benchmarked here https://arxiv.org/pdf/2204.05999.pdf




Let’s Talk GPT-x

Trained far longer, but on similar #code tokens

But in 1-3B range, Neo is clearly better

Past 1B parameters, CodeParrot & PolyCoder are seriously underfitting
* We trained 2.7B parameters with ~40B tokens (seen) —400B would have been better

What is the best pretraining/initialization signal?
* Let’s ask the future




CodeGen «d
CODEGEN

A 3-tier training regime

1. Initialize on The Pile

2. Calibrate on 6 languages from BigQuery GitHub
3. Fine-tune on Python-only

https://arxiv.org/pdf/2203.13474.pdf




CodeGen

Key observations:

* NL Scaling is decent, but capped

https://arxiv.org/pdf/2203.13474.pdf
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https://arxiv.org/pdf/2203.13474.pdf




CodeGen

Key observations:
* NL Scaling is decent, but capped

e Multi-lingual training helps modestly
* (note change in y-range)

* Monolingual fine-tuning is crucial
* First to match Codex

* |s “Multi” before “Mono” necessary?
* Unclear, Codex suggests not

https://arxiv.org/pdf/2203.13474.pdf
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How to Match Codex

* Data

* Several 100B tokens required
* Rarely available for a single programming language; NL initialization works well

* Language-specific data, 50B tokens or more, is needed for fine-tuning

* Model
* Performance increases log-linearly with parameters

* 2B to 6B parameters is a sweet-spot (for now)
* Fast to train, performance just 10%-25% shy of Codex
* But harder/more complex tasks need far more (see PaLM)

* Initialization
* Pre-training on NL seems helpful, but still unclear if essential
* Language-specific fine-tuning seems important
* But better architectures might address this



1T

Open Research Questions

10B

Parameters

* Fundamentally: Better Scaling Laws for Code

* Chinchilla suggests smaller models, more data
* If same for code, PolyCoder was near-optimal*
* The trick is finding that much mono-lingual data oM

1017 1019 1021 1023 1025
* Context window: 4,096 vs. 2,048

FLOPs
* AFAIK, only Codex uses the former
* Code files are large — it should help
* But, 4K is expensive, all-but necessitates sparse/dense attention

* Tokenization: PolyCoder vocabulary is code-specific, Codex & others aren’t
* Codex’s vocab seems to be GPT-3 + sequences of 1 — 24 spaces.

* Does it matter? This work suggests some code-specific tokenization might help:
https://openreview.net/pdf?id=rd-G1n0O-Jbq
* But note: no results on LLMs.

100M

https://arxiv.org/pdf/2203.15556.pdf -- We used 1.4e2! FLOPs; Chinchilla suggests using that budget to train ~3-4B parameters and ~75B tokens

—— Approach 1
—— Approach 2
—— Approach 3

X% X% X

Kaplan et al (2020)

Chinchilla (70B)
Gopher (280B)
GPT-3 (1758B)
Megatron-Turing NLG
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== Alex Polozov
@Skiminok

Th e COSt Of Sca | i n g Tbh personally, | find it sad that the know-how of

training LMs is spread across multiple competing
organizations, hundreds of researchers' & research
engineers' brains, and rarely systematically analyzed
and compared, let alone written.

* Huge interest in OSS models

11:59 AM - Apr 7, 2022 - Twitter for Android

* But academia is priced out

PolyCoder
* Leads to fragmented knowledge
I Parameter ~$2,000,000
~$30,000 B Tokens ~$100,000
100,000 100,000
é 10,000 ~$1,000 ~$40,000 10,000 =
£ ~$25,000 =
& 1000 ~$25,000 1000 £
L )
= X
© 100 100 =
a
10 10
Karampatsis Lachaux etal. CodeBert CuBert IntelliCode Codex GPT-3
etal. (UoE) (Facebook) (Microsoft) (Google) Compose (OpenAl) (OpenAl)
(Microsoft)

https://cacm.acm.org/magazines/2022/1/257443-the-growing-cost-of-deep-learning-for-source-code/fulltext
Costs based on approximate PetaFlop seconds at $3/h per V100 GPU — Codex is likely an underestimate
https://twitter.com/Skiminok/status/1512097828373377026




Forgetting Natural Language

Fine-tuning solely on code is powerful
* See PALM, CodeGen, Codex

* But, models tend to forget their NL training days
* That’s not ideal for communicating with humans

Q: How to sum items in a list in Python?

A:

CodeGen-NL 6.1B: You can use the sum function:
>»>1 = [1,2,3,4,5]

>>> sum(1l)

15

I have a list of items and I want to sum them. How can I do this?

Q: Tensorflow session is not defined.

if not tf.contrib.eager.in_eager_mode():

CodeGen-Multi 6.1B:

return tf.contrib.eager.get_default_session()

raise RuntimeError('tf.contrib.eager.in_eager_mode() must be True.')

CODEGEN-NL 6.1B
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Reliability

* LLMs don’t know to generate semantically correct code
* We just hope they do based on seeing enough data — spoilers: they don’t
* In fact, poor prompts make them more likely to generate vulnerable code
* Not just a matter of data volume: models associate prompts with good/bad examples seen

* That creates opportunities for prompt engineering
* E.g., Jigsaw, page 26 of PaLM
* Unclear if that is future-proof

 What is the alternative?
* Not sure! Tests are nice, but rarely available — should models write those too?
* Bringing static analysis in the loop may help (also Jigsaw) — but how to check any code?
* Nothing definitive yet



Questions?

Thanks to my CMU collaborators: Frank Xu, Uri Alon, Graham Neubig!

Models available at: https://github.com/VHellendoorn/Code-LMs/




